
Towards a Theory for Integration of
Mathematical Verification and Empirical Testing

Michael Lowry, Mark Boyd, Deepak Kulkarni
NASA Ames Research Center

M.S. 269-2, Code IC
Moffett Field, CA 94035

{ lowry,mab,kulkarni} @ptolemy.arc.nasa.gov
http://ic.arc.nasa.gov/ic/projects/amphion/

Abstract
From the viewpoint of a project manager responsible for

the V&V of a software system, mathematical verijcation
techniques provide a potentially valuable addition to other-
wise standard empirical testing. However, the value they add,
both in terms of coverage and in fault detection, has been
difficult to quantify. Potential cost savings from replacing
testing with mathematical techniques cannot be realized until
the tradeoffs can be quanttjied. This paper first describes a
,framework for a theory of software fault detection that is
based on software reliability and formalized fault models.
The novelty of this approach is that it takes into account the
relative utility of the various tools ,for fault detection. Sec-
ond, the paper then describes a utility model for integrating
mathematical and empirical techniques with respect to fault
detection and coverage analvsis for software. Third, the paper
discusses how to determine the optimal combination of
black-box testing, white-box (structural) testing, and formal
methods in V&V of a software system. Finally, a demon-
stration of how this utility model can be used in practice is
offered using a case study.from a NASA software systems.

1. Introduction

One of the Holy Grails of software engineering has been
to find an effective, efficient, and cost-effective procedure for
answering the question: How can one locate and fix ‘the very
last defect’ in a piece of software? Since a perfect solution
has yet to be found, the problem faced by software develop-
ment project managers becomes one of optimization: How
can one locate and fix as many as possible of the ‘most im-
portant’ defects in a piece of software given constraints on
schedule, resources, and budget? The bottom line for soft-
ware development managers is this: they want to know how
to allocate their limited resources in order to find and remove
as many defects as possible before the software is released,
and in particular the defects that are most important to the
requirements of their project.

Our long-term objective is to develop an expert advisory
system for software engineers and project managers who are
responsible for choosing tools and methods for software

system Verification and Validation (V&V). V&V costs have
always dominated development costs within the aerospace
community, and are increasingly dominating development
costs in all large-scale software projects in the general soft-
ware development community. For example, Microsoft has
allocated two in-house testers for every developer for its
Windows NT 5.0 project - doubling the ratio from the Win-
dows NT 4.0 project. Yet, no systematic method exists for
choosing among the wide variety of V&V tools and methods
offered by various commercial software-development tool
vendors and academic researchers. Furthermore, little guid-
ance has been offered on how to combine V&V methods to
achieve a synergy that is greater than the sum of the value of
applying individual methods.

The practical objective of developing a decision aid for
V&V frames the case studies and conceptual development we
report in this paper. Although we employ mathematics from
various disciplines, such as the Bayesian statistical perspec-
tive found in the software reliability community, this work
is independent of many of their controversial philosophical
underpinnings. For example the quantitative measure of
software reliability is controversial, because unlike hardware
whose failure is considered to be determined primarily by
wear-out of physical components over time, software failure
is considered to be determined solely by latent design defects.
Modeling failure rates due to latent design defects is contro-
versial.

In our framework we do not postulate an absolute meas-
ure of software reliability. Rather, we focus on the differ-
ences in the derivatives of various software reliability
growth models for different verification methods. Thus we
use these models for their comparative predictions, as op-
posed to their absolute predictions.

With respect to formal methods, in our framework we do
not postulate that they yield ‘correct software’, but rather
that they provide effective methodologies for covering lim-
ited properties of projections of a software system. More
than one method might need to be used in order to expose

O-8186-8750-9/98 $10.00 0 1998 IEEE 322

difficult defects, because the mechanism of a defect might
span multiple projections.

Ultimately, then, our objective is to provide a decision
aid for managing software V&V that can answer the follow-
ing kinds of questions:

1. How long should software be tested through black-box
simulation of expected operational use before switching to
more sophisticated methods for V&V?

2. How can different verification methods be synergisti-
cally combined to detect particularly difficult types of de
fects?

3. How can testing be used to discharge assumptions un-
derlying a formal methods verification, particularly when the
assumptions can not be discharged through analytical meth-
ods?

4. How can formal analysis be used to transform a testing
problem requiring excessive computational resources (trials)
to a testing problem requiring far fewer resources?

1 .l Benefits of Integration

There are currently two major approaches to software
verification and validation (V&V): traditional software test-
ing techniques, and formal methods. Both of these ap-
proaches are limited by computational complexity in the
size and/or scope of the analyses for which they may be
used. Fortunately, the two methods break down due to com-
putational complexity in ways which are very different and
which are in some sense orthogonal. Specifically, black-box
testing is limited in its ability to effectively cover known
fault modes, due to its nature of random sampling. White-
box (structural) testing, which often reduces to systematic
sampling based on some coverage criteria (often related to a
fault mode); has better coverage properties but still lacks the
generality that comes from the symbolic calculation of for-
mal methods. Formal methods are limited by the computa-
tional complexity of symbolic calculation, and often by the
cost of the expert human labor required to use them. Formal
methods and white-box testing are limited in their ability to
detect unknown (i.e. unanticipated) fault modes.

As a consequence of these differences in coverage limita-
tions between the types of V&V methods, it is possible to
integrate the use of testing with formal methods in such a
way as to allow the strengths of each to complement and
offset the weaknesses of the other. The remainder of this
paper discusses a framework for achieving this synergy be-
tween the two methods. Section 2 describes a framework for
integration, and section 3 presents a NASA case study, in
which the framework is developed into a mathematical util-
ity model. Section 4 describes how to generalize the model.
A longer technical report describes further case studies [4]
and generalizations.

2. Integration of Empirical Testing and
Formal Methods

We begin with a brief overview of both software testing
and formal methods as software V&V methods, in order to
describe the underlying nature of the mechanism each uses to
uncover faults (latent errors) in the software and under what
circumstances the mechanism of each breaks down.

2.1 Overview and Tradeoffs of Traditional Soft-
ware Testing Methodologies

Traditional software testing methodologies have been
empirical in nature, and generally fall into one of two major
categories: black-box (functional-only) testing, or white-box
(structural) testing. For black-box testing, the software is
considered to be a process about which nothing is known of
the internal structure or workings of the architecture or code.
Consequently, only the functional performance, the inputs,
the outputs, and the execution time and memory demands of
the software are considered in an analysis. This type of test-
ing tends to take the form of a protocol based strictly on
statistical sampling of the input-output space of the soft-
ware. In this paper our mathematical analysis assumes that
this sampling is random, at least with respect to any particu-
lar fault mode for software failure.

In contrast to black-box testing, white-box testing per-
mits details of the software’s internal architecture and code to
be taken into account. Tests are selected to cover some
measure, such as the number of source code statements exe-
cuted at least once. In this paper our mathematical analysis
assumes that the tests are systematic with respect to one
specified fault mode, but that the tests have limited effec-
tiveness outside this fault mode.

For both black-box and white-box testing, a variety of
strategies may be employed to dynamically estimate the
effectiveness of the testing protocol in detecting faults, and
thereby estimate the probability that additional undetected
faults remain in the software after a certain amount of test-
ing has been performed. An example of one such strategy is
fault seeding, where a number of known faults are deliber-
ately introduced into the code and the effectiveness of the
testing is judged by observing how many of the seeded faults
are detected by the testing protocol. Another, used in this
paper, is through parameter fitting of software reliability
growth models, based on the history of faults detected during
testing.

A major strength of traditional black-box testing is that
the tests are performed on the full software code in an execu-
tion environment which is identical or very close to the ac-
tual environment in which the software will be deployed. As
a consequence, differences between the performance of the
software during testing and the performance of the software

323

in the field are minimized. Furthermore, through techniques
based on the operational profile [7], test resources can be
focused on expected usage.

The major weakness of traditional testing methods is that
they are fundamentally based on statistical sampling of the
execution of the software. As a consequence, there is no way
to guarantee that all faults will be uncovered, nor is there a
way of guaranteeing that serious latent faults initially pres-
ent in the software will have been uncovered after a specific
amount of testing. Indeed some of the perennial problems
that software testing managers face are such questions as:
How long should testing go on until “enough” of the faults
have been found and fixed? How can one be sure that a very
serious fault did not evade the testing regime? Because of the
hit-or-miss nature of empirical testing methods and the
enormous size of the possible behavior space of the typical
software system, the time required for testing increases dta-
matically as the desired fault coverage increases.

For high-confidence systems, the desired mean-time be-
tween failures often exceeds tens of millions of hours; thus
empirical testing even according to the operational profile is
insufficient to achieve this level of reliability. Therefore, the
primary mechanism by which traditional empirical testing
methodologies break down is the limitation inherent in sta-
tistical sampling of complex behaviors. This is illustrated
by the Pentium floating point defect: under rare circum-
stances the floating point circuitry of the early Pentiums
produced an incorrect result. These circumstances were not
revealed during the extensive testing prior to the Pentium’s
release.

2.2 Overview and Trade-offs of Formal Methods

Unlike traditional testing, which samples the behavior of
a digital system through observation of the system in ac-
tion, formal verification mathematically calculates the be-
havior of a digital system. Note that the Pentium defect
would have been revealed through formal verification algo-
rithms. Subsequent to this costly defect, the digital hardware
community has incorporated many formal verification algo-
rithms into their design cycle.

To date, two main approaches to formal verification have
been developed: computer-assisted theorem proving, and
model checking. Computer-assisted theorem proving has the
advantage of being capable of verifying unbounded (i.e.,
infinite state) systems. The theorem-proving approach has
the disadvantage that it requires sustained effort over a sub-
stantial period of time on the part of a human expert. It also
has the disadvantage that failure to derive a proof does not
necessarily mean the software has a fault. While computer-

based theorem provers have become increasingly powerful
[8], the problem of finding suitable invariants for induction
proofs will prevent them from being completely automated.
Because of the difficulty of quantifying the cost of an ex-
pert’s theorem-proving efforts, and the lack of the prospect
for automation which could facilitate such a quantification of
cost, we will not address this type of formal verification in
our analysis. However, we do include limited forms of
automated inference, e.g., partial evaluation.

The second major approach to formal verification is
model checking, which is a mathematical technique for veri-
fying and debugging concurrent or real-time systems mod-
eled as interacting finite state machines. The disadvantage of
model checking compared to theorem proving is that model
checkers can only verify or debug systems of bounded size.
The advantage of model checking over theorem-proving is
that model checkers are completely automatic, and when
they detect a software fault they provide an error trace dem-
onstrating how it would lead to a software failure. However,
when applied to software systems they require the software
to be abstracted and translated to the language of the model
checker. Further considerations of model checkers as applied
to software is addressed in [4].

2.3 A Framework for Integration of Formal
Methods with Testing

Our framework for integration is a method for deriving
composite V&V protocols. Each analysis method, as applied
to a V&V task, has a number of component costs and a
number of utility factors. Examples are, respectively, execu-
tion time required for the analysis, and fault coverage - the
portion of the total behavior space that is probed such that a
fault lying in a probed region is guaranteed to be detected.
Different methods can be compared for cost versus utility.
V&V protocols that optimize the tradeoff between cost and
utility can then be derived.

As an example, consider fault coverage versus the total
cost of human labor and computer time for executing an
analysis technique. Figure 1 shows a generic graph of the
relationship between cumulative cost and fault coverage for
black-box testing, white-box testing, and formal methods.
The general pattern is that the rate of cost increase as fault
coverage increases is greatest for black-box testing, some-
what less (but still relatively large) for white-box testing,
and lowest for formal methods. However, white-box testing
incurs an initial structural analysis cost, and formal methods
can require a substantial modeling cost. Both these tech-
niques incur a higher start-up cost than black-box testing.

324

FM

cost

Fault Coverage
Figure 1: Relationship between Total Cost

and Fault Coverage

In this paper, we will demonstrate our framework by de-
riving a composite protocol based on an incremental utility
analysis: the expected computer time required to fmd the
next software fault. Figure 2 shows a graph of this utility
metric for these same methods, measured by the change in
the failure intensity function (see section 2.3.1) versus total
elapsed computer time. Formulas for the transition points
where the incremental utility of one technique overtakes the
incremental utility of another technique will be derived. The
testing protocols will be parameterized on values which
might not be known a priori, such as the size of a state
space or the distribution of latent faults in a software sys-
tem, and hence must be estimated during the protocol. An
innovative feature of this protocol is that it explicitly con-
siders different fault modes, and the relative strengths of dif-
ferent techniques for different fault modes. In the rest of this
section we will overview the method and in the next section
develop the mathematics, illustrated through a case study.

2.3.1 Deriving the Cost vs. Utility Curves for
Empir ica l Tes t ing

The curves for testing methods in Figure 2 are derived
through software reliability growth models [6], which are

44T)
dT

Figure 2: Rate for finding the next software
fault versus cumulative execution time.

models of the rate of reduction in failure intensity during the
testing and debugging phases. A failure is a deviation from
expected behavior of a software system; failure intensity is
proportional to the number of software faults encountered
per unit of execution time. (A software fault might or might
not result in a failure when the code containing the fault is
executed.) The models express the failure intensity as a tic-
tion of either testing time or the cumulative number of
faults detected. The models differ in their underlying assump-
tions about the fault intensity reduction process during test-
ing and debugging, giving rise to different equations that
express the failure intensity.

Two well-known software reliability growth models de-
scribed in [6, pp. 30-501 are the Basic execution-time model
and the logarithmic Poisson execution-time model. In the
case study analysis presented in the following section, we
will use the Basic model as part of the composite model for
black-box testing. As compared to the Poisson model, the
Basic model tends to favor testing over formal methods, and
hence is more conservative. The failure intensity A, for the
Basic model (expressed in terms of cumulative number of
faults encountered rather than execution time) is given by:

I \
a,(p) = ao* 1-tI 1
where il,, is the initial fault intensity at the start of test-

ing, v, is the total number of faults present in the software,
and p is the expected number of cumulative faults encoun-
tered at a given point in time during the testing regimen.
These parameters are usually estimated using statistical fit-
ting techniques on data collected during the testing and CL
bugging of the software. The basic model assumes there are
a finite number of faults, uniformly distributed, each of
which is repaired effectively when it results in a failure dur-
ing testing.

In our analysis, we are most concerned with the incre-
mental cost of finding the next fault. In the basic model, the
expected number of cumulative faults encountered versus
execution time is a negative exponential approaching the
limit of total latent faults:

4’) = vo
(l_e-(?s/i”)

The derivative of this fi_mction is the rate at which faults
are encountered as a function of total execution time:
&J) = A ,-(‘X1) T

dT O
(The inverse of this derivative is a measure of the ex-

pected incremental execution time to find the next defect, and
hence the incremental cost.) In this paper the Basic model is
combined with a posterior Bayesian estimation model to
derive the incremental utility function for black-box testing.
The incremental utility function for white-box testing is
based solely on a different posterior Bayesian estimation

325

model. The different Bayesian estimation models are due to
considerations of the relative mechanisms of black-box ver-
sus white-box testing for different fault modes, as explained
in section 2.4.

2.3.2 Deriving the Cost vs. Utility Curves for
Formal Methods Analysis Techniques

The curve in Figure 2 for the formal methods technique,
which in the case study for this paper is a symbolic alge-
braic analysis applied to partial evaluation of source code, is
an estimate based on computational complexity and relative
coverage. As in most formal methods techniques, it is as-
sumed that the analysis is partitioned into a disjunction of
symbolic cases. Each case is equivalent in coverage to a
number of structure-based tests. The comparative utility of
each case is the number of tests it subsumes divided by the
expected computation time for the symbolic analysis. The
cases can be rank-ordered according to this utility. The best
cases are done first, leading to a monotonically decreasing
function of the rate of fault discovery versus analysis time.

2.4 Theory of Defects: Fault Modes

The essence of our approach to integrating testing and
formal methods is to provide a formal description of the
fault modes by which latent software faults can cause soft-
ware failures. For example, in the case study, the precondi-
tions for an optimization routine are not satisfied. Specifi-
cally, the optimization routine requires a continuous fimc-
tion as one of its arguments - a function with any disconti-
nuities in the interval of optimization will cause the optimi-
zation routine to fail. Known fault modes are associated with
white-box (structural) test procedures and/or formal methods
analysis methods that systematically uncover such faults.
However, we recognize that not all fault modes will be
known a priori. Therefore we include unknown fault modes
in the calculations of reliability growth. Reliability growth
is calculated separately for the different fault modes.

In the initial phase of black-box testing, discovered de
fects are attributed to one of these fault modes. The cross-
over point for known fault modes between the utility of
black-box testing and other methods is based in part on the
difference between the effectiveness of random probes, with
replacement, versus systematic procedures for uncovering
faults. In the initial stages of testing, there is little difference
between random probes with replacement versus probes
without replacement. However, as testing proceeds, the
probability of repeating a probe increases. Thus the utility
of switching to systematic methods increases.

For unknown fault modes, black-box testing is presumed
to be the only method for uncovering latent faults. By defi-
nition, the structural mechanisms by which unknown fault
modes operate are not known a priori, and hence there is no

systematic method based on structural considerations for
detecting such faults. However, because only a fraction of
discovered defects will be of a priori unknown fault modes,
the failure intensity estimates for the unknown modes by
themselves will be lower than failure intensity estimates for
all fault modes combined. Furthermore, unless a large fiac-
tion of the defects are for unknown fault modes, the failure
intensity estimates for unknown fault modes will be sub-
stantially lower compared to failure intensity estimates for
all fault modes combined.

Thus, in the initial stages, black-box testing will be pre-
ferred because it uncovers both known and unknown fault
modes. However, as testing proceeds, the failure intensity
estimates for unknown fault modes will likely decrease rap-
idly, and the penalty for random probes with replacement for
known fault modes versus systematic probes will increase.
This determines the cross-over points, when the incremental
utility of white-box or formal methods becomes greater than
black-box testing. In principle, as V&V efforts continue,
there may be cross-back points as the estimated failure in-
tensity for the known fault modes is reduced vis-a-vis the
estimated failure intensity for the unknown fault modes. We
don’t address these cross-back point calculations in our case
study, but note that the basis for the calculations is the same
as those for the cross-over points from black-box to struc-
tural/formal methods. In practice, the confidence intervals for
the failure intensity maximum likelihood estimates will
entail that the optimal V&V strategies be mixed, with the
mixture ratio changing over time. In this paper we will con-
centrate on the trade-offs of the different verification methods
as they relate to the different fault modes and leave the calcu-
lations of the confidence intervals to future research. We also
leave to future research methods for dynamically increasing
the number of known fault modes as debugging reveals the
mechanisms of a priori unanticipated fault modes.

3. Case Study: Reusable Launch Vehicle

As part of the Reusable Launch Vehicle (RLV) condition-
based maintenance project, a numerical optimization routine
was used to estimate, based on sensor data, the amount of
degradation in hardware components. The Optimize() routine
that was used is part of the MatrixX package provided by IS1
Inc., and is based on I&marker’s improved algorithm for
convergence in constrained optimization. Convergence is
guaranteed if the objective function, the constraint functions,
and also their first derivatives are all continuous functions.

In this particular safety-critical RLV application, the ob-
jective function was a complicated program which included
subroutines that computed factors requiring physical model-
ing ranging from a non-ideal gas law, to Newton’s laws, to
geometric constraints. A typical run of black-box testing of
the application over the test suite typically took overnight,

326

and reviewing the logs took over an hour if the run was suc-
cessful, and much longer if the run was not successful. After
detecting an error, locating the source of the error (such as a
continuity error) could take days, and each test-detect-locate-
modify cycle took at least a week. After extensive testing
and attempts at modification, lasting over several months, it
was determined that the objective function could not be
modified to reliably achieve the convergence conditions m-
quired for this particular safety-critical use of Optimize().

An improved verification protocol would have greatly
speeded up the testing and location of errors, thereby ena-
bling the developers to explore more promising alternatives.
In this section we contrast (admittedly after the fact) three
methods for verifying and debugging this safety-critical
software: black-box testing, white-box testing, and formal
analysis. We will only consider these alternatives with the
metric of fault detection, and not the metric of fault location.
We note that additional considerations of fault location
would favor white-box and formal analysis over black-box
testing.

The Optimize0 routine in MatrixX solves the following
problem:

Find p such thatf(pl is minimized subject to:
g(pl = 0 ; h, <= h(p) <= h, ;p, <=p <=pi,

wherep is a vector of optimization parameters, with upper
and lower boundsp, andp,,,.f(p) is the cost function, g(p) is
the equality constraint function, and h(p) is the inequality
constraint function with upper and lower bounds h, and h,,

A proof found in [3] proves the following theoretical re-
sult for the convergence of the Optimize() procedure. The
proof requires that certain conditions on the cost function j
hold for a correct application of the procedure. We have
augmented these (proof) obligations with the abnormal
predicate, thus providing the basis for both the known and
unknown fault modes.

For all f , g , h , h,, 4,) P/, pL, continuous(f; P,, P,>
and continuous (derivative@, p,, pJ
and not(abnormal(Optimizefl)

=> Optimizefl = p such that f(p) is a global minimum
over the interval p, , pL, , and the region de-
fined by the equality and inequality con-
straints.

3.1 Black-box testing

Because it tests the input-output behavior of a software
system, black-box testing is a method for detecting unan-
ticipated fault modes that are not part of the known fault
modes. In the case study described in this section, these un-
anticipated modes are captured through the abnormal
predicate. The known fault modes include those obtained
through the negation of preconditions in the prelpost condi-

tion formalization of the routines in the system. Thus our
comparison of black-box testing to other techniques in-
volves two elements: first, a statistical probing of the
known fault modes; and second, a statistical posterior esti-
mation of the likelihood of unanticipated fault modes. If the
errors found in the initial black-box testing phase fall within
the known fault modes, then the posterior likelihood of un-
anticipated fault modes declines rapidly. In this paper we do
not address the issue of the prior estimation of unanticipated
fault modes, nor the augmentation of the known fault modes
if new fault modes are discovered in black-box testing.

In this case study, a typical execution of the Optimize0
routine may involve lo4 or more executions of the cost
function,f(x). In contrast, a white-box test for local continu-
ity of the cost function and its derivative over a small
neighborhood involves only a few executions of ,f(x). Thus,
white-box testing for the continuity conditions is orders of
magnitude faster than testing the optimization routine itself,
and the reliability growth that this fault mode (i.e. the fail-
ure of the Optimize() routine due to discontinuities) does not
occur is much more rapid than through black-box testing.

We factor the analysis for reliability growth through
black-box testing into two components. The first is a basic
execution model for the reliability growth for unanticipated
fault modes, corresponding to the abnormal predicate.
(The basic execution model allows fault modes to be consid-
ered separately.) The second is an analysis of the effective-
ness of black-box testing for the known fault modes of dis-
continuities in the cost function. For the known fault
modes, we provide a more fine-grained Bayesian analysis
than the basic execution model.

In the subsequent analysis we will compare the probabil-
ity of finding the next fault through white-box testing of a
small interval for discontinuity of the cost function J; to the
probability of finding the next fault through an equal expen-
diture of cpu time in black-box testing. For the abnormal
fault component uncovered through black-box testing, we
will approximate the probability by multiplying the fault
intensity (see section 2.3.1) by CL, the number of execution
units corresponding to the time it takes to execute one
white-box test. This approximation is good as long as the
product yields a probability much smaller than 1 .O:I \

L voJ
The number of unanticipated faults is, by definition, not

known a priori. This number is estimated after a period of
debugging. The maximum likelihood estimate for the total
number of abnormal faults based on the history of inter-
vals between finding such faults, measured by cpu time dur-
ing testing, is given by equation 12.41 in [(i]:

327

me&-- = mete
,=11;, -i+l zt, +t,(G, -m,)

,=I
Where Co, the maximum likelihood estimate, is deter-

mined such that the terms on the left and right of the equal-
ity are equal; m, is the number of abnorma 1 faults detected
by time t,; and in general the ith abnormal fault is &
tected at time ti.

For the known fault modes, black-box testing is modeled
as a random probe with possible repetition of successive
probes. For this case study, assume that the Optimize0 rou-
tine fails on any iteration of the inner loop that computes
the cost function f at a point of discontinuity. Thus, every
iteration of the inner loop includes a test for the continuity
of the cost function f over an interval. However, this inter-
val may be one that has already been probed. Let N denote
the number of distinct intervals. If T intervals are already
tested for continuity and if we assume the interval of the
current iteration is randomly selected from all intervals, then
the chance that the current interval is a (tested, untested)
interval is, respectively: T/N, (N-T)/N.

The probability for testing T out of N intervals with M
trials with replacement is given by the following recurrence
relations for the function s&f, T) (where s(M, T) denotes the
probability that exactly T distinct intervals are tested in M
trials):

s(M,l) =

s(M+i,T+i) = ~~(M,T+I) +~.s(M,T)

In Figure 3 are several superimposed graphs for s(M,T)
with N = 100, T varying between 1 and 100, and M varying
from 10 to 500. As can be seen, the most likely estimate for
T as a function of M is only slightly below M for small
values, but obtaining full coverage of all intervals is very
difficult. It takes 500 trials, just to get a 50% probability of
full coverage.

In the next section on white-box testing, formulae will
be derived for the posterior probability that the cost function
is continuous as a function of the number of tested intervals
T. The difference between white-box testing and black-box
testing is that each call offin white-box testing tests conti-
nuity over a new interval, whereas in black-box testing the
chance it tests a new interval is (N-T)/N. Given the shape of
this function, we can qualitatively see that in the initial
stages of testing there is little difference between the reliabil-
ity growth for the known fault modes between black-box and
white-box testing. Furthermore, because black-box testing
also probes unanticipated fault modes, the overall reliability
growth will initially favor black-box testing. However, as
testing proceeds, the gap between black-box testing and

Figure 3: Variation of Coverage against Cost (Measured by
the Number of Trials)

0.7

3 0.6
‘y
p 0.5

Change in Probability Density with
Number of Testing Trials, M

the

+M=

-a--M=

+M-

&M=

*-M=

-o-M=

100

200

500

50

25

10

T (Number of Intervals Tested)

white-box testing for the known fault modes widens consid-
erably, unless the unanticipated fault modes dominate.

3.2 White-box Testing

In contrast to the black-box tests, white-box tests for
continuity will successively probe untested intervals ordered
by some scheme. Hence every new test will check continu-
ity of one new interval, and the number of tests M equals
the number of tested intervals T.

To compare the incremental utility of black-box to white-
box testing, we will need to consider posterior estimates for
the number of both unanticipated faults (from eqn. 12.41 of
[6]) and the known fault of discontinuity of the cost function
or its derivative. The following analysis derives formulae for
the posterior probability that the cost function f does not
have any discontinuities.

Define the assertions Obs, X o and X, as follows:
Obs, :T tests of distinct intervals have not revealed

any discontinuities.
X0 : f does not have any points of discontinuity.
X, : f has k points of discontinuity.

Then the posterior probability P(X,lObsJ that there axe
no discontinuities given that T tests have been passed is
derived as follows:

P(Xo I Obs,) = $$$ * P(Obs, 1 X,)
r

(from Bayes Theorem)
where P(Obs&J = 1 always (by definition).
We compute P(Obs,wJ as follows: Let N-k intervals be

continuous out of a total of N intervals. The probability that
the first chosen interval will be continuous will be (N-k) /
N. The second interval will be chosen from N-l intervals of
which N-k-l are continuous. So the probability that the
second interval will be continuous will be (N-k-l) / (N-1).

328

Therefore:
P(Obs, I x,)
= (N-k)*(N-k-l)*(N-k-2)*...*(N-k-T+1)

N*(N-l)*...*(N-T+l)

= (N-k)! (N-T)!
N!(N-T-k)!

And: P(Obs,) = L’oP(~k) * P(Obs, 1 x,)

Hence: P(X, 1 Ohs,) = N P(% >

C PLY,> * P(Ohs, I XA)
A-=0

This gives the probability that no discontinuities exist in
any intervals given that T distinct intervals have been tested
and have not revealed any discontinuities. The graph in Fig-
ure 4, calculated with Excel, is a plot of this posterior esti-
mate as a function of T, assuming an a priori probability
distribution for X, given by 1/2”(k+l), e.g., where the a
priori probability of no intervals with discontinuities is 112.

1

pt// 0.8

g 0.6
-
Ol 0.4

2 0.2

0
c7 In b 07

T/10 (Number of
Intervals Tested)

tive). For black-box testing, the faults include discontinui-
ties and unanticipated faults.

For structural testing, the probability that the next inter-
val finds a defect is the probability of there being a defect in
some interval divided by the number of untested intervals:

1- P(X, 1 Ohs,)
N - T

For black-box testing, the probability is the union of the
events of a discontinuity being detected and/or an unantici-
pated fault being detected. These are assumed to be independ-
ent events. We calculate this as the complement of the prob-
ability that neither type of fault is detected:

1 _ 1 _ 1 - PNo I Ohs,)
N

For small values of the probabilities of encountering a
fault of either fault mode, we can approximate this through
the following formula:

Note that initially the number of tested intervals is 0, so
the first term for black-box testing is equal to the probabil-
ity of structural testing finding a discontinuity in the next
interval (i.e., N=N-T initially). Thus black-box testing will
be preferred initially, since the second term for unanticipated
faults will provide an overall greater probability for finding a
fault. The optimal crossover point from black-box to struc-
tural testing is approximated by the following equality,
which is parameterized by the number of intervals tested T,
and the estimates for finding unanticipated faults based on
the cumulative history of such faults:

T

i
1 -f’(& I Ohs,)

N (N - T)
] = (aio*(l-~]]

Figure 4: Posterior estimation of no fault discontinuities.

3.2.1 Optimal Cross-over for Black-Box and
White-Box Testing

Given this posterior estimate, we now consider the opti-
mal cross-over point between black-box testing and struc-
tural testing for the utility metric of the incremental cost for
finding the next fault. To simplify the analysis, we only
consider the scenario where there is either no intervals or
exactly one interval with a discontinuity. We also assume
that the number of intervals that are sampled in black-box
testing is logged. This will enable a transition from black-
box to structural testing without repeating the intervals al-
ready tested.

We will measure the incremental cost of finding the next
defect as the probability that the next interval tested has a
fault. For white-box (structural) testing, the only fault ck+
tected is a discontinuity in the cost function (or its deriva-

3.3 Formal Methods

In many cases, the continuity of the cost function f can
be proven algebraically over its entire domain, or at least
partitioned into subintervals of the domain, some of which
will be amenable to an algebraic proof of continuity. Here
we outline the proof method and indicate how it can be
combined with white-box testing for subintervals which am
not amenable to algebraic proofs. As a simple example,
consider the following program which computes y given x:

SUBROUTINE f (INPUT x: REAL): REAL
LOCAL y: REAL;
IF (x > 0) THEN y = x* x , ELSE y = x*x*x
RETURN(Y)

This subroutine partitions the real number domain into
three intervals: (-co, 0] , [O,O] , (0,co).

329

Over the first interval, the cost hmctionf and its deriva- 4. COnClUSiOnS
tive are continuous if and only if x*x and its derivative am
continuous. Likewise over the third interval, the equivalent This paper described a framework for a theory of integrat-
condition is on x*x*x. Over the second interval at the inter- ing different V&V methods based on software reliability
section point, we require the following two conditions: x*x growth models and formalized fault models. We have dem-
= X*X*X at x=0, and likewise for the first derivatives: 2x = on&rated through a case study that the utility of different
3x*x at x=0

This type of case analysis on intervals with algebraic
proofs within intervals and at interval boundaries can be
generalized through automatic program differentiation [I].
Roughly, the conditionals and case structure of the subrou-
tine’s source code will partition the input space into distinct
intervals, most of which will be significantly larger than the
small intervals tested through white-box testing. However,
not all intervals will be amenable to algebraic proofs of con-
tinuity, and interval boundaries are often particularly difficult
to analyze. Even if an interval can be analyzed symbolically,
the cost of doing so might be computationally prohibitive.

To optimally combine structural testing with symbolic
analysis, we assume that a symbolic analysis first partially
partitions the input space for the cost functionfinto distinct
intervals based on the top-level conditionals and case struc-
ture of the program. This partitioning might not be com-
plete, since the general problem is intractable. Those inter-
vals and interval boundaries which are identified are then
sorted into a monotonically decreasing order according to the
expected utility of symbolic analysis, defined as the equiva-
lent number of white-box probes subsumed for an equivalent
amount of cpu time. To be more concrete, consider the case
where code differentiation has an expected cost in cpu time
of N log N in the size of the algebraic term corresponding to
a conditional branch within the program. Let W be the
number of white-box probes that would be subsumed by the
interval represented by the conditional branch. Then the op-
timal transition point between white-box testing and sym-
bolic analysis in the ordered sequence is defined by:

N log N 2 aW
To summarize this case study, we have considered a

NASA project where an approach to condition-based mainte-
nance based on estimation through an optimization routine
was ultimately found to not be reliable enough for the
safety-critical requirements. A less costly approach to &
bugging than black-box testing would have led to this reali-
zation much sooner. Using our framework, we partitioned
the fault modes into an expected class based on negating the
preconditions of the optimization routine, and an abnor -
ma1 class. We then analyzed three V&V methods: black-
box testing, structural testing, and formal methods (algebraic
analysis). Optimal crossover points based on the utility met-
ric of the execution time to find the next fault were derived.

approaches to V&V can be compared based on metrics such
as the incremental cost of finding the next fault. The fiame-
work takes into account the relative strengths and weak-
nesses of black-box testing, structural testing, and formal
methods. The latter are viewed as sophisticated debugging
algorithms for certain classes of faults. A novel aspect of
this framework is the abnormal fault mode, which en-
ables differential analysis of anticipated and unanticipated
fault modes. The advantage of black-box testing is its supe-
rior ability to uncover unanticipated faults, its disadvantage
is its poor performance in detecting defects for anticipated
fault modes. Structural testing and formal methods provide
systematic and often efficient methods for uncovering defects
for anticipated fault modes.

The framework postulates the existence of crossover
points where an optimal V&V strategy would switch from
one analysis method to another. Crossover points between
black-box testing and structural testing; and between struc-
tural testing and symbolic methods, were derived. Further
case studies and an extension of the analysis to model-
checking are described in a longer technical report [4].

Although the mathematics in section 3 were developed in
the context of a specific retrospective case study, the
mathematics can likely be generalized as follows. Various
mathematical models (including the Basic execution-time
model) for software reliability growth based on testing have
been extensively developed in the literature [5,6]. To apply
our framework for calculating the tradeoffs for black-box
testing, we require algorithms for hypothesis testing and
maximum likelihood parameter estimations for these mod-
els. These algorithms, with associated software, can be
found in [5], as well as case studies documenting how these
models have been used in practice.

The specific structural (white-box) testing in this case
study is based on partitioning the real-number line into sub-
intervals. The size of each subinterval is small enough that a
single test can determine the continuity of the derivative of a
function over the subinterval. Nonetheless, the mathematical
development in this case study generalizes to any method of
partitioning the execution space of a software system. This
includes not only various methods of partitioning the do
main of the input parameters for the whole system or sub-
systems, but also partitioning methods based on paths
through the code, decision points, function points, etc.

The key result is a method for calculating the tradeoff be-
tween black-box testing, which randomly samples the entire
execution space; with more focused structural testing that

330

systematically samples each subset defmed by a partition.
The key insight is that defining a fault mode, such as dis-
continuity of derivatives, enables a partitioning of the execu-
tion space into subsets. In this partition-based testing, it is
assumed that testing an element of a subset will expose a
defect over that subset within this fault mode.

The tradeoff with black-box testing arises because the
same partition is unlikely to hold for other fault modes,
particularly for fault modes that are unanticipated. Further-
more, it is assumed that focused tests designed to expose one
particular fault mode will have limited effectiveness in ex-
posing other fault modes. This leads to the tradeoff of black-
box testing for testing multiple fault modes (known and
unknown) versus systematic testing based on a partition for
a particular fault mode. The mathematics for calculating this
tradeoff reported here applies directly to any structural testing
method for which there is a linear relationship between the
amount of testing and the number of subsets of the partition
which are sampled. The mathematics would need to be ex-
tended to handle structural testing methods that achieve a
non-linear relationship between subsets sampled and the
amount of testing, such as the MC/DC protocol [2] for test
coverage of execution paths.

The analysis of formal methods reported here is extended
in [4], which includes case studies that use model-checking
and considerations of abstractions that reduce the computa-
tional complexity of applying these algorithms to software.
It builds on previous work in [9] for combining pessimistic
and optimistic testing strategies. The current state-of-the
practice in formal methods as applied to software generally
requires a substantial level of manual effort on the part of a
formal methods expert. This is mainly due to the modeling
effort required for automated methods such as model-
checking, or to the exploration of different strategies in in-
teractive methods such as verification theorem proving.
However, various efforts are underway to make the applica-
tion of formal methods far more automated in practice. Thus
this paper has focused on a method for comparing the com-
putational complexity of symbolic analysis versus structural
testing. Like structural testing, symbolic analysis will typi-
cally partition the software analysis into a disjunction of
distinct cases based on an anticipated fault mode. These dif-
ferent cases can be compared to the equivalent cost of analy-
sis through white-box testing, and then each case can be
analyzed through the most cost-effective method.

The contribution of this paper is in accordance with a de-
veloping perspective within the formal methods community,
namely, that formal methods verification algorithms are
primarily systematic debugging tools. We have taken this
perspective to its next logical step, namely that of compar-
ing the utility of testing to analytic algorithms for debug-
ging. The comparison for any software system will depend
on the particulars of the requirements of the software system

(and hence the ‘most important’ defects to uncover), and the
nature of the implementation. However, aspects of our
framework will generalize, such as: the use of fault modes to
compare black-box testing to systematic methods, the use of
negated preconditions for subsystems to indicate anticipated
fault modes, and the analysis of model abstraction for formal
methods as it relates to false positives (see [4]). To achieve
our ultimate objective of an expert advisory system for
software project managers, future research will focus on the
mapping from requirements/implementation to fault modes,
and from fault modes to systematic methods for debugging.

5. Acknowledgments

We would like to thank the reviewers and our colleagues
Jeremy Frank, Ann Patterson-Hine, Arthur Reyes, and Rich-
ard Sheldon for their insightful comments on preliminary
versions of this paper.

6. References
[l] Bischof, C., and A. Griewank. “Tools for the auto-

matic differentiation of computer programs”, in
ICIAM/GAMM 95: Issue I: Numeric& Analysis,
Scientific Computing, Computer Science, edited by
G. Alefeld, 0. Mahrenholtz, and R. Mennicken, pp.
267-272.

[2] DO-178B: Software Consideration in Airborne Sys-
tems and Equ’ipment Cert$cation. Requirements and
Technical Concepts for Aviation. Washington, D.C.
December, 1992.

[3] Gill, P. E., Murray, W. and M. Wright. Practical Op-
timization, Academic Press, 198 1.

[4] Lowry, M., Boyd, M., and D. Kulkarni. “Towards a
Theory for Integration of Mathematical Verification
and Empirical Testing,” NASA Ames Technical
Memorandum, September 1998.

[5] Lyu, M. Handbook of Software Reliability Eneineer-
&g, IEEE Computer Society Press, 1996.

[6] Musa, J., Iannino, A., and K. Okumoto. Software
Reliabilitv: Measurement. Prediction. Auolication,
MacGraw-Hill, New York, 1987.

[7] Muss, J., Fuoco, G. Irving, N., and D. Kropfl. “%
Operational Profile, ” in Handbook of Software Reli-
abilitv Engineering, M. Lyu (ed.), IEEE Computer
Society Press, 1996.

[8] Rushby, J., and D. Stringer-Calvert. A Tutorial for
the PVS Specification and Ver$cation Systems, SRI-
CSL-95-10, 1995.

[9] M. Young and R. Taylor. “Rethinking the Taxonomy
of Fault Detection Techniques, ” in Proceedings of In-
ternational Conference on Software Engineering,
1989.

331

